Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2023
Status:
Autorzy: Rachwał Alicja, Popławska Emilia, Gorgol Izolda, Cieplak Tomasz, Pliszczuk Damian, Skowron Łukasz, Rymarczyk Tomasz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 5
Wolumen/Tom: 13
Numer artykułu: 2942
Strony: 1 - 20
Impact Factor: 2,5
Web of Science® Times Cited: 5
Scopus® Cytowania: 9
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 24 lutego 2023
Abstrakty: angielski
The purpose of the theoretical considerations and research conducted was to indicate the instruments with which the quality of a dataset can be verified for the segmentation of observations occurring in the dataset. The paper proposes a novel way to deal with mixed datasets containing categorical and continuous attributes in a customer segmentation task. The categorical variables were embedded using an innovative unsupervised model based on an autoencoder. The customers were then divided into groups using different clustering algorithms, based on similarity matrices. In addition to the classic k-means method and the more modern DBSCAN, three graph algorithms were used: the Louvain algorithm, the greedy algorithm and the label propagation algorithm. The research was conducted on two datasets: one containing on retail customers and the other containing wholesale customers. The Calinski–Harabasz index, Davies–Bouldins index, NMI index, Fowlkes–Mallows index and silhouette score were used to assess the quality of the clustering. It was noted that the modularity parameter for graph methods was a good indicator of whether a given set could be meaningfully divided into groups.