Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2023
Status:
Autorzy: Kowalik Przemysław, Sobecki Grzegorz, Bawoł Piotr, Muzolf Paweł
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 5
Wolumen/Tom: 15
Numer artykułu: 4330
Strony: 1 - 28
Impact Factor: 3,3
Web of Science® Times Cited: 1
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus | Google Scholar
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 28 lutego 2023
Abstrakty: angielski
The travelling salesman problem (TSP) is one of combinatorial optimization problems of huge importance to practical applications. However, the TSP in its “pure” form may lack some essential issues for a decision maker—e.g., time-dependent travelling conditions. Among those shortcomings, there is also a lack of possibility of not visiting some nodes in the network—e.g., thanks to the existence of some more cost-efficient means of transportation. In this article, an extension of the TSP in which some nodes can be skipped at the cost of penalties for skipping those nodes is presented under a new name and in a new mathematical formulation. Such an extension can be applied as a model for transportation cost reduction due to the possibility of outsourcing deliveries to some nodes in a TSP route. An integer linear programming formulation of such a problem based on the Gavish–Graves-flow-based TSP formulation is introduced. This formulation makes it possible to solve the considered problem by using any integer linear programming optimization software. Numerical examples and opportunities for further research are presented.