Fault diagnosis of machines operating in variable conditions using artificial neural network not requiring training data from a faulty machine
Artykuł w czasopiśmie
MNiSW
200
Lista 2023
Status: | |
Autorzy: | Pawlik Paweł, Kania Konrad, Przysucha Bartosz |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2023 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 3 |
Wolumen/Tom: | 25 |
Strony: | 1 - 14 |
Impact Factor: | 2,2 |
Web of Science® Times Cited: | 10 |
Scopus® Cytowania: | 14 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | This work was supported by the Polish Ministry of Science and Higher Education [grant number 16.16.130.942] |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Otwarte czasopismo |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 15 czerwca 2023 |
Abstrakty: | angielski |
The fault diagnosis for maintenance of machines operating in variable conditions requires special dedicated methods. Variable load or temperature conditions affect the vibration signal values. The article presents a new approach to diagnosing rotating machines using an artificial neural network, the training of which does not require data from the damaged machine. This is a new approach not previously found in the literature. Until now, neural networks have been used for machine diagnosis in the form of classifiers, where data from individual faults were required. A new diagnostic parameter rDPNS (Relative Differences Product of Network Statistics) as a function of the machine's shaft order was proposed as a kind of new order spectrum independent of the machine's operating conditions. The presented work analyses the use of the proposed method to diagnose misalignment and unbalance. The results of an experiment carried out in the laboratory demonstrated the effectiveness of the proposed method. |