Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
200
Lista 2023
Status:
Autorzy: Hunicz Jacek, Gęca Michał Sławomir, Ratajczyk Elżbieta, Andwari Amin Mahmoudzadeh, Yang Li-Ping, Mikulski Maciej
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 294
Numer artykułu: 117564
Strony: 1 - 17
Web of Science® Times Cited: 1
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The research was funded by the Lublin University of Technology statutory research, contract No. FD-20/IM-5/44. Maciej Mikulski acknowledges the support of the Silent Engine project co-funded by Business Finland (NextGenerationEU funding).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 23 sierpnia 2023
Abstrakty: angielski
Homogeneous charge compression ignition (HCCI) is a promising low-temperature combustion technique for low-emission internal combustion engines. Unlike conventional engines, HCCI lacks a direct ignition control mechanism, necessitating closed-loop combustion control. This study proposes a phenomenological-based, cost-effective, and non-intrusive approach using vibration data analysis to determine essential combustion parameters. Experiments were conducted on a single-cylinder research engine with an accelerometer attached to the engine head. The engine operation envelope covered the whole engine’s operating area in naturally aspirated HCCI mode. Wavelet analysis revealed that combustion-related frequencies centered around 500 Hz, independent of operating conditions. The correlation-seeking analysis included peak acceleration amplitude and its crank angle with peak heat release rate (HRR) data. The peak HRR location was accurately identified within one degree when vibration amplitude exceeded the 100 m/s2 threshold. This encompassed 98.5% of the analyzed combustion cycles. The peak HRR prediction accuracy had a maximum error below 21% and was suitable to monitor reaction rates, especially in incomplete combustion and high ringing cycles.