Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
70
Lista 2024
Status:
Autorzy: Ma XiaoQing, Zhang Hang, Margielewicz Jerzy, Gąska Damian, Wolszczak Piotr, Litak Grzegorz, Zhou ShengXi
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 1
Wolumen/Tom: 67
Strony: 221 - 239
Web of Science® Times Cited: 0
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This work was supported by the National Natural Science Foundation of China (Grant No. 52161135106), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ201908061536-15091), the International Science and Technology Cooperation Project of Guangdong Province (Grant No. 2021A0505030012), the Innovation Capability Support Plan of Shaanxi Province (Grant No. 2020KJXX-021), the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No. CX2022001) and the 111 Project (Grant No. BP0719007). LITAK Grzegorz, MARGIELEWICZ Jerzy, GĄSKA Damian, and WOLSZCZAK Piotr were supported by the National Science Centre, Poland under the project SHENG-2 (Grant No. 2021/40/Q/ST8/00362).
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Wind-induced vibration energy harvesting has a great potential for utilizing wind energy to supply power for low-powered devices. To improve the working performance of energy harvesters effectively, a suitable structural design is crucial. This paper proposes a dual-beam piezo-magneto-elastic wake-induced vibration energy harvesting system to enhance the functional performance of aeroelastic energy harvesters in environments with variable wind speeds The system contains two piezoelectric beams coupled by magnets (forming upstream and downstream energy harvesters), and each beam is attached with a foam cylinder. A corresponding dynamic model is provided, and output characteristics are obtained at different wind speeds. Results and experimental verification indicate that both upstream and downstream energy harvesters can realize efficient energy harvesting. When the wind speed exceeds a certain critical value, the amplitudes of the system’s displacement and voltage are high. The wind speed threshold value is approximately 1.25 m/s. When the wind speed and magnet spacing are 10.2 m/s and 20 mm, respectively, the output power of the system reaches 4.9×10−4 W. Moreover, the wind speed threshold value of the proposed system can be adjusted by an equivalent nonlinear restoring force.