Optimizing the Neural Network Loss Function in Electrical Tomography to Increase Energy Efficiency in Industrial Reactors
Artykuł w czasopiśmie
MNiSW
140
Lista 2024
Status: | |
Autorzy: | Kulisz Monika, Kłosowski Grzegorz, Rymarczyk Tomasz, Słoniec Jolanta, Gauda Konrad, Cwynar Wiktor |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2024 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 3 |
Wolumen/Tom: | 17 |
Numer artykułu: | 681 |
Strony: | 1 - 17 |
Impact Factor: | 3,0 |
Web of Science® Times Cited: | 2 |
Scopus® Cytowania: | 3 |
Bazy: | Web of Science | Scopus | Google Scholar |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 31 stycznia 2024 |
Abstrakty: | angielski |
This paper presents innovative machine-learning solutions to enhance energy efficiency in electrical tomography for industrial reactors. Addressing the key challenge of optimizing the neural model’s loss function, a classifier tailored to precisely recommend optimal loss functions based on the measurement data is designed. This classifier recommends which model, equipped with given loss functions, should be used to ensure the best reconstruction quality. The novelty of this study lies in the optimal adjustment of the loss function to a specific measurement vector, which allows for better reconstructions than that by traditional models trained based on a constant loss function. This study presents a methodology enabling the development of an optimal loss function classifier to determine the optimal model and loss function for specific datasets. The approach eliminates the randomness inherent in traditional methods, leading to more accurate and reliable reconstructions. In order to achieve the set goal, four models based on a simple LSTM network structure were first trained, each connected with various loss functions: HMSE (half mean squared error), Huber, l1loss (L1 loss for regression tasks—mean absolute error), and l2loss (L2 loss for regression tasks—mean squared error). The best classifier training results were obtained for support vector machines. The quality of the obtained reconstructions was evaluated using three image quality indicators: PSNR, ICC, and MSE. When applied to simulated cases and real measurements from the Netrix S.A. laboratory, the classifier demonstrated effective performance, consistently recommending models that produced reconstructions that closely resembled the real objects. Such a classifier can significantly optimize the use of EIT in industrial reactors by increasing the accuracy and efficiency of imaging, resulting in improved energy management and efficiency. |