Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Kiersztyn Adam, Kiersztyn Krystyna, Pylak Korneliusz, Bis Jakub, Dolecki Michał, Żelazna Anna
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 3
Wolumen/Tom: 27
Numer artykułu: 3492
Strony: 320 - 332
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 30 października 2024
Abstrakty: angielski
Purpose: This paper develops a novel approach to impute data gaps in economic surveys. In contrast to classical methods relying on statistical analysis of survey data, more advanced prediction techniques combined with fuzzy sets are applied to effectively address missing data. Design/Methodology/Approach: The paper proposes an unconventional approach that integrates advanced prediction methods with fuzzy sets for imputing missing data. The effectiveness of the method is tested on the extensive dataset from the Polish Panel Survey (POLPAN), which was conducted every five years from 1988 to 2018. The survey contains a wide range of questions asked over successive waves, enabling a comprehensive analysis of the method for imputing data gaps. Findings: The results of numerical experiments show that the proposed method performs highly effectively, regardless of the proportion of observations assigned to the training set. Some methods, such as Support Vector Machine (SVM), did not prove suitable for imputing this dataset. The choice and number of explanatory variables play a crucial role in the method's effectiveness, with cases where a single variable was sufficient for accurate imputation. Practical Implications: The proposed method offers practical applications for improving data quality in economic surveys, especially in large-scale longitudinal surveys like POLPAN. It provides new insights into handling missing data and optimizing the selection of explanatory variables, which can enhance the robustness of imputation techniques in complex surveys. Originality/Value: This paper contributes an original and valuable approach by combining advanced prediction techniques with fuzzy sets, providing a highly effective tool for imputing missing data. This unconventional method offers new avenues for further research in economic surveys and beyond.