Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
200
Lista 2024
Status:
Autorzy: Hunicz Jacek, Yang Li-Ping, Rybak Arkadiusz, Ji Shuaizhuang, Gęca Michał Sławomir, Mikulski Maciej
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: Pt A
Wolumen/Tom: 323
Strony: 1 - 15
Impact Factor: 9,9
Scopus® Cytowania: 0
Bazy: Scopus
Efekt badań statutowych NIE
Finansowanie: Jacek Hunicz and Liping Yang gratefully acknowledge the Chinese Ministry of Science and Technology for supporting this research through the National Foreign Experts Program (grant No. G2023180006L) and National Natural Science Foundation of China (grant No. 52171298). The experimental facilities used in this research were provided with support from the commissioned task entitled “VIA CARPATIA Universities of Technology Network named after the President of the Republic of Poland Lech Kaczy´nski”, contract No. MEiN/2022/DPI/2575. Maciej Mikulski Acknowledges the Flexible Clean Propulsion Technologies project with financial support from Business Finland (ref. 1310/31/2023).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 15 listopada 2024
Abstrakty: angielski
Hydrotreated vegetable oil (HVO) is becoming a widely accepted renewable drop-in alternative fuel to diesel. However, conventional diesel combustion does not fully exploit HVO’s superior physicochemical parameters. Its high cetane index should significantly improve the performance and emission of next-generation, dual-fuel, reactivity-controlled compression ignition (RCCI) engines. These have a promising future in marine and off-road sectors. This study is the first comprehensive verification of HVO’s benefits towards achieving superior RCCI combustion with natural gas. It used a sophisticated, single-cylinder research engine with a fully controllable air/ fuel paths, calibrated in conventional compression ignition mode. The calibration experiments in a corre- sponding RCCI setpoint covered the cross-sensitivity of high-reactivity fuels (HVO and diesel) to boost pressure, excess air ratio, exhaust gas recirculation and start of injection, investigated at 85 % and 93 % energy-based blending ratios with natural gas. Extensive measurement instrumentation provided combustion and emission characterisation, enabling observations regarding both the phenomenology and applied potential of HVO- activated RCCI. Best performance was observed at the boundary of mixture dilution, restricted by the misfire or combustion variability limits. High reactivity of HVO allows for extending combustion stability limits, enabling increasing both, the local dilution (earlier injection timings) and the global dilution (higher mixture strengths or higher exhaust recirculation ratios). Calibrated along these phenomenological outcomes, HVO and diesel allow achieving efficiency over 2 percentage points superior in RCCI mode, compared to conventional diesel reference. With HVO, RCCI can be calibrated to comfortably meet EPA Tier 4 emission limits in all legislated species, without aftertreatment. Particular merits are in NOX reduction, for which the best case HVO- RCCI tested at 0.7 g/kWh vs 2.8 g/kWh of diesel-RCCI. HVO further cuts down methane slip by more than 45 %, while PM emissions for RCCI are generally measured ultra-low. Corresponding conventional diesel reference exceeds the EPA NOX and PM limits by respectively 1500 % and 400 %.