Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Lista 2024
Status:
Autorzy: Rudzki Marcin , Powroźnik Paweł
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 2
Wolumen/Tom: 15
Strony: 51 - 56
Scopus® Cytowania: 0
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 27 czerwca 2025
Abstrakty: angielski
The article explores the challenge of identifying individuals using biometric data through advanced deep learning methods. The research employs three ground-breaking convolutional neural network architectures: ResNet50, EfficientNetB0, and VGG16. The project's objective was to examine the influence of critical factors, such as image quality and data processing techniques, on the performance of face identification systems. A series of experiments were carried out based on predefined test scenarios, allowing for the verification of hypotheses regarding the effects of input image resolution and data transformations on model accuracy. The experimental results highlight the substantial impact of both the chosen architecture and processing parameters on the system's identification accuracy. The article presents valuable conclusions that can inform the further development of biometric systems. Notably, the EfficientNetB0 model achieved the best performance across various metrics, including the confusion matrix and activation heatmaps, demonstrating its superior capability in identifying biometric data from facial images.