Process Control via Electrical Impedance Tomography for Energy-Aware Industrial Systems
Artykuł w czasopiśmie
MNiSW
140
Lista 2024
| Status: | |
| Autorzy: | Król Krzysztof, Kłosowski Grzegorz, Rymarczyk Tomasz, Gauda Konrad, Kulisz Monika, Golec Ewa, Surowiec Agnieszka |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 22 |
| Wolumen/Tom: | 18 |
| Numer artykułu: | 5956 |
| Strony: | 1 - 25 |
| Impact Factor: | 3,2 |
| Scopus® Cytowania: | 0 |
| Bazy: | Scopus |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 6 listopada 2025 |
| Abstrakty: | angielski |
| Conventionally, tomography is an inspection technique in which tomographic images are intended for human perception and interpretation. In this work, we shift this paradigm by transforming tomography into an autonomous estimator of industrial reactor states, enabling fully automated process control. Alcoholic fermentation was employed as an example of a controlled process in the current study. The work presents an original concept utilizing transfer learning in conjunction with a ResNet-type artificial neural network, which converts electrical measurements into a sequence of values correlated with the conductivity of pixels constituting the cross-section of the examined biochemical reactor. The conductivity vector is transformed into a parameter determining substrate concentration, enabling dynamic process regulation in response to signals generated from EIT (Electrical Impedance Tomography). Within the scope of the described research, calibration of the conductivity vector against substrate concentrations was performed, and a Matlab/Simulink-based dynamic Monod kinetics model was developed. The obtained results demonstrate high accuracy in substrate concentration estimation relative to reference values throughout a forty-six-hour process. The same signals enable energy-efficient process control, in which cooling and mixing intensity are regulated according to energy prices and renewable energy availability. This strategy may possess particular application in facilities where fermentation installations are co-located with bioenergy production units. |
