Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Gando Michał, Pałka Filip, Książek Wojciech, Pławiak Paweł, Siedlecka Aleksandra, Jeruzalski Tomasz, Olender-Skorek Magdalena, Jonak Kamil, Rejdak Robert, Nowomiejska Katarzyna, Matysik-Woźniak Anna, Teus Miguel, Arruabarrena Sanchez Carolina, Sylwestrzak Marek
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 15
Numer artykułu: 34486
Strony: 1 - 16
Impact Factor: 3,9
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 3 października 2025
Abstrakty: angielski
Diabetes is one of the main diseases posing a threat to healthcare systems. One of the complications of diabetes is diabetic retinopathy, which, if left untreated, can lead to serious consequences such as blindness. Early detection of this disease is critical to prevent disability and stop the process of vision loss. In our research, we aimed to develop and validate a machine learning model enabling early diagnosis of retinopathy disease. We were the first to conduct research using as many as eight public databases and one private database collected during the project implemented by the Ministry of Digital Affairs and the Ministry of Health of Poland. We analyzed 14,402 fundus photographs from patients, leveraging this large dataset to enhance the trustworthiness and validity of our findings. Such a large number of photos emphasizes the credibility and reliability of the results obtained. A significant innovation in our approach includes employing forty-six unique methods for feature selection and extraction, utilizing techniques such as CLAHE, B-CosFire, and Hough transform. We chose XgBoost and Random Forest algorithms for classification, with parameter tuning performed via the Optuna library. Our most successful model, employing the Random Forest algorithm combined with LBP and GLCM for feature extraction, reached a classification accuracy of 80.41%, F1-Score of 74.41%, and AUC of 0.80. The machine learning model we developed proved highly effective in the early detection of diabetic retinopathy. Further refinement is recommended to make this model a viable tool in clinical settings.