Hybrid deep neural networks for automated detection of coronary pathologies in angiographic video sequences
Fragment książki (Rozdział monografii pokonferencyjnej)
MNiSW
20
Poziom I
| Status: | |
| Autorzy: | Poplavskyi Oleksandr, Mezhiievska Iryna, Wójcik Waldemar, Kartbayev Timur S., Pavlov Sergii V., Maslovskyi Valentyn, Olenich Oksana, Volosovych Oleksandr, Zhumagulova Sholpan |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Strony: | 1 - 7 |
| Scopus® Cytowania: | 0 |
| Bazy: | Scopus |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | TAK |
| Nazwa konferencji: | Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2025 |
| Skrócona nazwa konferencji: | SPIE-IEEE-PSP 2025 |
| URL serii konferencji: | LINK |
| Termin konferencji: | 3 lipca 2025 do 4 lipca 2025 |
| Miasto konferencji: | Lublin |
| Państwo konferencji: | POLSKA |
| Publikacja OA: | NIE |
| Abstrakty: | angielski |
| Coronary artery disease (CAD) remains one of the most prevalent causes of death worldwide, demanding accurate and timely diagnosis to guide treatment. Coronary angiography is the clinical reference standard for visualizing arterial patency; however, its manual interpretation is labour-intensive and subject to considerable inter-observer variability. This study introduces a hybrid deep learning framework that fuses convolutional neural networks with long short -term memory units to exploit both spatial and temporal cues in cine angiography. After automated frame extraction, selection and normalization, sequences are processed end-to-end to detect the presence and type of clinically significant coronary pathology. Validation on an expert-labeled video dataset demonstrates robust performance (accuracy=0.88; precision=0.85; recall=0.92; F1-score=0.88; AUC≈0.91). Gradient-weighted class activation mapping highlights lesion-relevant vessel segments, supporting model interpretability. These findings confirm that the proposed CNN-LSTM architecture can reduce observer variability and accelerate decision-making by delivering consistent, automated assessment of angiographic studies. |