Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
25
Lista A
Status:
Autorzy: Kłosowski Grzegorz, Rymarczyk Tomasz, Gola Arkadiusz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2018
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 9
Wolumen/Tom: 8
Numer artykułu: 1457
Strony: 1 - 14
Impact Factor: 2,217
Web of Science® Times Cited: 56
Scopus® Cytowania: 59
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 24 sierpnia 2018
Abstrakty: angielski
This paper presents an innovative system of many artificial neural networks that enables the tomographic reconstruction of the internal structure of a flood embankment. An advantage of the proposed method is that it allows us to obtain high-resolution images, which essentially contributes to early, precise and reliable prediction of operational hazards. The method consists in training a cluster of separate neural networks, each of which generates a single point of the output image. The simultaneous and parallel application of the set of neural networks led to effective reconstruction of the internal structure of a deposition site for floatation tailings. Results obtained from the study allow us to solve the low resolution problem that usually occurs with non-invasive imaging methods. This effect was possible thanks to the design of a new intelligent image reconstruction system.