Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
70
Lista 2021
Status:
Autorzy: Margielewicz Jerzy, Gąska Damian, Litak Grzegorz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 118
Strony: 47 - 57
Impact Factor: 3,764
Web of Science® Times Cited: 23
Scopus® Cytowania: 26
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
The aim of this work is to evaluate the dynamics of the quasi-zero stiffness vibration isolator, with particular emphasis on the density distribution of Poincaré cross-section points for different conditions of the system's excitation. The research was mainly focused on model tests carried out to examine the structures representing the geometry of strange attractors of a quasi-zero stiffness vibration isolator. The analysed mechanical system consists of one main spring and two compensation springs. Energy losses are caused by friction at the connection points of the compensation springs and vibroisolated mass. On the basis of a formulated non-linear mathematical model, the ranges of variation of physical parameters of an external dynamic input for which the system motion is chaotic are identified. Taking into account three selected values of the dynamic input amplitude, a bifurcation diagram and a diagram defining the number of phase stream intersections (NPSI) with the abscissa of the phase plane are generated. Based on the diagrams, a solution is selected. The diagram proposed by us (NPSI) is an alternative method of identifying areas in which the system moves chaotically. The classic Poincaré cross-section combined by us with information about the density of point distribution on the trajectory intersection with the control plane serve as a basis for the assessment of evolution of the geometric structure of strange attractors. The evaluation of the density distribution of Poincaré cross-section points provides important information regarding the evolution of geometrical structures of strange attractors. It has been shown that in relation to large ranges of changes in the control parameter, the geometric structure of the strange attractor is stretched and curved. However, in the area of small changes in the control parameter, the evolution of the attractor’ geometric structure can only be observed by analysing the density of point distribution on the Poincaré cross-section by the probability density function (PDF). The areas with the highest density of the Poincaré cross-section are usually located in places where the strange attractor is curved. Taking into account the practical application of research results, operational guidelines are formulated.