Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza listy
Status:
Autorzy: Cieplak Tomasz, Rymarczyk Tomasz, Tomaszewski Robert
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2019
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 252
Strony: 1 - 7
Web of Science® Times Cited: 5
Bazy: Web of Science
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: III International Conference of Computational Methods in Engineering Science (CMES’18)
Skrócona nazwa konferencji: CMES’18
URL serii konferencji: LINK
Termin konferencji: 22 listopada 2018 do 24 listopada 2018
Miasto konferencji: Kazimierz Dolny
Państwo konferencji: POLSKA
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 14 stycznia 2019
Abstrakty: angielski
This paper presents a concept of the air quality monitoring system design and describes a selection of data quality analysis methods. A high level of industrialisation affects the risk of natural disasters related to environmental pollution such as e.g. air pollution by gases and clouds of dust (carbon monoxide, sulphur oxides, nitrogen oxides). That is why researches related to the monitoring this type of phenomena are extremely important. Low-cost air quality sensors are more commonly used to monitor air parameters in urban areas. These types of sensors are used to obtain an image of the spatiotemporal variability in the concentration of air pollutants. Aside from their low price , which is important from a point of view of the economic accessibility of society, low-cost sensors are prone to produce erroneous results compared to professional air quality monitors. The described study focuses on the analysis of outliers as particularly interesting for further analysis, as well as modelling with machine learning methods for air quality assessment in the city of Lublin.