Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

Status:
Autorzy: Kiersztyn Adam, Karczmarek Paweł, Kiersztyn Krystyna, Pedrycz Witold
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 1 - 11
Scopus® Cytowania: 1
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Anomaly (outlier) detection is one of the most important problems of modern data analysis. The sources of anomalies are varying. They can be the results of database users' mistakes, operational errors or just missing values. The problem is very important because of the fast growth of large data sets. Therefore, in this study, we present detailed results of work on the concept of Granular Computing-based approach to anomaly detection, classification, and gradation. The aim of the study is to introduce an innovative solution that allows the use of information granules to identify and classify anomalies. The novelty of the proposed solution consists in the use of fuzzy semantics implied by the statistical properties of the data considered. Moreover, instead of the classic approach to detecting anomalies in the data, it is proposed to determine the degree of anomaly for the data transformed to the new resulting state space. Thanks to the use of an innovative approach using the universal descriptor space, it is possible to determine the degree of anomaly, and by using various aggregation methods one can also specify its type.