Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
konferencja
Status:
Autorzy: Kiersztyn Adam, Karczmarek Paweł, Kiersztyn Krystyna, Łopucki Rafał, Grzegórski Stanisław, Pedrycz Witold
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 1 - 6
Web of Science® Times Cited: 5
Scopus® Cytowania: 4
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: Funded by the National Science Centre, Poland under CHIST-ERA programme (Grant no. 2018/28/Z/ST6/00563). The work was co-financed by the Lublin University of Technology Scientific Fund: FD-ITIT-KIER.
Materiał konferencyjny: TAK
Nazwa konferencji: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2021
Skrócona nazwa konferencji: FUZZ-IEEE 2021
URL serii konferencji: LINK
Termin konferencji: 11 lipca 2021 do 14 lipca 2021
Miasto konferencji: Virtual Conference
Państwo konferencji: LUKSEMBURG
Publikacja OA: NIE
Abstrakty: angielski
With the advent of research into Granular Computing, in particular information granules, the way of thinking about data has changed gradually. Researchers and practitioners do not consider only their specific properties, but also try to look at the data in a more general way, closer to the way people think. This kind of knowledge representation is expressed particularly in approaches based on linguistic modeling or fuzzy techniques such as fuzzy clustering, but also newer approaches related to the explanation of how artificial intelligence works on these data (so-called explainable artificial intelligence). There fore, especially important from the point of view of the methodology of data research is an attempt to understand their potential as information granules. Such a kind of approach to data presentation and analysis may introduce considerations of a higher, more general level of abstraction, while at the same time reliably describing the network of relationships between the data and the observed information granules. In this study, we tackle this topic with particular emphasis on the problem of choosing a predictive model. In a series of numerical experiments based on both artificially generated data, ecological data on changes in bird arrival dates in the context of climate change, and COVID-19 infections data we demonstrate the effectiveness of the proposed approach built with a novel application of information potential granules.