Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Publikacje Pracowników PL z lat 1990-2010

Publikacje pracowników Politechniki Lubelskie z lat 1990-2010 dostępne są jak dotychczas w starej bazie publikacji
LINK DO STAREJ BAZY

MNiSW
70
Lista 2021
Status:
Warianty tytułu:
Hybrydowe uczenie maszynowe w impedancyjnej tomografii elektrycznej
Autorzy: Rymarczyk Tomasz, Kłosowski Grzegorz, Guzik Mirosław, Niderla Konrad, Lipski Jerzy
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2021
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 12
Wolumen/Tom: 97
Strony: 169 - 172
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 1 grudnia 2021
Abstrakty: angielski | polski
Artificial intelligence plays an increasingly important role in industrial tomography. In industry, various types of tomography can be used, where one of the criteria for classification may be a physical phenomenon. Thus, it is possible to distinguish computed tomography, impedance tomography, ultrasound tomography, capacitance tomography, radio-tomographic imaging, and others. The research described in this paper focuses on the EIT method used to imaging reactors' interior and industrial vessels. Inside the tested reactor, there may be a liquid of various densities containing solid inclusions or gas bubbles. The presented research presents the concept of transforming measurements into tomographic images using many known, homogeneous methods simultaneously. It is assumed that there is no single method of solving the inverse problem for all possible measurement cases. Depending on the specifics of the studied case, various methods generate reconstructions that differ in terms of accuracy and resolution. The presented research proves that the proposed approach justifies the increase in computational complexity, ensuring higher quality of tomographic images.
W tomografii przemysłowej coraz większą rolę odgrywa sztuczna inteligencja. W przemyśle można stosować różne rodzaje tomografii, gdzie jednym z kryteriów podziału może być wykorzystywane zjawisko fizyczne. W ten sposób można wyróżnić tomografię komputerową, tomografię impedancyjną, tomografię ultradźwiękową, tomografię pojemnościową, obrazowanie radio-tomograficzne i inne. Opisywane w niniejszym opracowaniu badania skupiają się na metodzie EIT Wykorzystywanej do obrazowania wnętrza reaktorów i zbiorników przemysłowych. Wewnątrz badanego reaktora może znajdować się ciecz o różnej gęstości, zawierająca wtrącenia stałe lub pęcherze gazu. W prezentowanych badaniach przedstawiono koncepcję przekształcania pomiarów na obrazy tomograficzne wykorzystującą wiele znanych, homogenicznych metod jednocześnie. Przyjęto założenie, że nie istnieje jedna metoda rozwiązania problemu odwrotnego dla wszystkich możliwych przypadków pomiarowych. W zależności od specyfiki badanego przypadku różne metody generują rekonstrukcje zróżnicowane pod względem dokładności i rozdzielczości. Zaprezentowane badania udowadniają, że proponowane podejście uzasadnia wzrost złożoności obliczeniowej zapewniając wyższą jakość obrazów tomograficznych.