Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2021
Status:
Autorzy: Kiersztyn Adam, Karczmarek Paweł, Łopucki Rafał, Kiersztyn Krystyna, Nowicki Tomasz, Perzanowski Kajetan, Olech Wanda
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 136
Strony: 1 - 8
Impact Factor: 6,9
Web of Science® Times Cited: 6
Scopus® Cytowania: 8
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 1 lutego 2022
Abstrakty: angielski
Nowadays, in the era of automation of ecological measurements, more and more often we are dealing with large data sets in which various unexpected anomalies may occur. Their detection is often crucial for a proper assessment of ecological trends and processes. Therefore, methods allowing for identification of anomalous data are especially important for a deep understanding of ecological phenomena and their relationships in practical domains. In this study, we present an innovative application of information granules to the in-depth study of spatial behavior of the European bison (Bison bonasus), based on GPS data. As evidenced by a series of numerical experiments, this granular computing-based approach allows to detect both anomalies and regularities in the atypical behavior of the European bison, a species important for local ecosystems. The transformation of the original data space into a new semantic multidimensional space, defining the degree of membership in the anomaly class represented by new descriptors allows for more unambiguous analysis of non-standard animal behavior.