Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
40
Lista 2021
Status:
Autorzy: Król Krzysztof, Rymarczyk Tomasz, Kozłowski Edward, Niderla Konrad
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2022
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 2408
Numer artykułu: 012025
Strony: 1 - 14
Scopus® Cytowania: 0
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: XXX Sympozjum Środowiskowe PTZE Zastosowania Elektromagnetyzmu we Współczesnej Inżynierii i Medycynie
Skrócona nazwa konferencji: XXX PTZE
URL serii konferencji: LINK
Termin konferencji: 11 września 2021 do 15 września 2021
Miasto konferencji: Jastarnia
Państwo konferencji: POLSKA
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 23 grudnia 2022
Abstrakty: angielski
This paper presents the research results on the use of machine learning algorithms and electrical tomography to detect moisture in the tank. The article presents methods such as principal component analysis and elastic net in logistic regression, for identifying object locations. Tomographic methods show a spatial image of the interior, not individual points of the examined cross-section. Previous studies have shown that the choice of machine learning model has a significant impact on the quality of the results obtained. Machine learning is more likely to provide accurate tomogram reconstructions than traditional mathematical methods. In this study, linear regression models performed slightly worse than neural networks. A specially developed numerical model was used in this study. The characteristic feature of the analyzed solution is the partition of the modeled object into a set of elements using a specially developed mesh