Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
This paper presents the research results on the use of machine learning algorithms and electrical tomography to detect moisture in the tank. The article presents methods such as principal component analysis and elastic net in logistic regression, for identifying object locations. Tomographic methods show a spatial image of the interior, not individual points of the examined cross-section. Previous studies have shown that the choice of machine learning model has a significant impact on the quality of the results obtained. Machine learning is more likely to provide accurate tomogram reconstructions than traditional mathematical methods. In this study, linear regression models performed slightly worse than neural networks. A specially developed numerical model was used in this study. The characteristic feature of the analyzed solution is the partition of the modeled object into a set of elements using a specially developed mesh