Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2023
Status:
Autorzy: Piłat-Rożek Magdalena, Dziadosz Marcin, Majerek Dariusz, Jaromin-Gleń Katarzyna, Szeląg Bartosz, Guz Łukasz, Piotrowicz Adam, Łagód Grzegorz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2023
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 20
Wolumen/Tom: 23
Strony: 1 - 18
Impact Factor: 3,4
Web of Science® Times Cited: 0
Scopus® Cytowania: 2
Bazy: Web of Science | Scopus | ADS (Astrophysics Data System) CABI CAB Direct CAPlus / SciFinder CNKI CNPIEC dblp Computer Science Bibliography Digital Science DOAJ EBSCO Elsevier Databases Scopus Engineering Village Ei Compendex E
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 19 października 2023
Abstrakty: angielski
first_page settings Order Article Reprints Open AccessArticle Rapid Method of Wastewater Classification by Electronic Nose for Performance Evaluation of Bioreactors with Activated Sludge † by Magdalena Piłat-Rożek 1 [ORCID] , Marcin Dziadosz 1 [ORCID] , Dariusz Majerek 1 [ORCID] , Katarzyna Jaromin-Gleń 2 [ORCID] , Bartosz Szeląg 3 [ORCID] , Łukasz Guz 4, Adam Piotrowicz 4 [ORCID] and Grzegorz Łagód 4,* [ORCID] 1 Faculty of Mathematics and Information Technology, Lublin University of Technology, 20-618 Lublin, Poland 2 Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland 3 Institute of Environmental Engineering, Warsaw University of Life Sciences—SGGW, 02-797 Warsaw, Poland 4 Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, Poland * Author to whom correspondence should be addressed. † This paper is an extended version of our paper published in “Rapid on-line method of wastewater parameters estimation by electronic nose for control and operating wastewater treatment plants toward Green Deal implementation” presented at the 2nd International Conference on Strategies toward Green Deal Implementation—Water, Raw Materials and Energy (ICGreenDeal2021), Cracow, Poland, 8–10 December 2021. Sensors 2023, 23(20), 8578; https://doi.org/10.3390/s23208578 Received: 31 August 2023 / Revised: 6 October 2023 / Accepted: 16 October 2023 / Published: 19 October 2023 (This article belongs to the Section Chemical Sensors) Download keyboard_arrow_down Browse Figures Versions Notes Abstract Currently, e-noses are used for measuring odorous compounds at wastewater treatment plants. These devices mimic the mammalian olfactory sense, comprising an array of multiple non-specific gas sensors. An array of sensors creates a unique set of signals called a “gas fingerprint”, which enables it to differentiate between the analyzed samples of gas mixtures. However, appropriate advanced analyses of multidimensional data need to be conducted for this purpose. The failures of the wastewater treatment process are directly connected to the odor nuisance of bioreactors and are reflected in the level of pollution indicators. Thus, it can be assumed that using the appropriately selected methods of data analysis from a gas sensors array, it will be possible to distinguish and classify the operating states of bioreactors (i.e., phases of normal operation), as well as the occurrence of malfunction. This work focuses on developing a complete protocol for analyzing and interpreting multidimensional data from a gas sensor array measuring the properties of the air headspace in a bioreactor. These methods include dimensionality reduction and visualization in two-dimensional space using the principal component analysis (PCA) method, application of data clustering using an unsupervised method by Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, and at the last stage, application of extra trees as a supervised machine learning method to achieve the best possible accuracy and precision in data classification.