Modelling the Level of Sunlight by Using Fuzzy Sets
Fragment książki (Materiały konferencyjne)
MNiSW
70
konferencja
Status: | |
Autorzy: | Kiersztyn Adam, Czerwiński Dariusz, Karczmarek Paweł, Dolecki Michał, Miłosz Marek |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Strony: | 1 - 6 |
Web of Science® Times Cited: | 0 |
Scopus® Cytowania: | 0 |
Bazy: | Web of Science | Scopus | IEEE Xplore |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | 2023 IEEE International Conference on Fuzzy Systems |
Skrócona nazwa konferencji: | FUZZ - IEEE 2023 |
URL serii konferencji: | LINK |
Termin konferencji: | 13 sierpnia 2023 do 17 sierpnia 2023 |
Miasto konferencji: | Incheon |
Państwo konferencji: | KOREA POŁUDNIOWA |
Publikacja OA: | NIE |
Abstrakty: | angielski |
Correct classification remains a challenge for researchers and practitioners developing algorithms. Even a minor enhancement in classification quality, for instance, can significantly boost the effectiveness of detecting conditions or anomalies in safety data. One solution to this challenge involves aggregating classification results. This process can be executed effectively as long as the aggregation function is appropriately chosen. One of the most efficient aggregation operators is the Choquet integral. Furthermore, there exist numerous generalizations and extensions of the Choquet integral in the existing literature. In this study, we conduct a comprehensive analysis and evaluation of a novel approach for deriving an aggregate classification. The aggregation process applied to various classifiers is based on enhancements to the Choquet integral. These novel expressions draw inspiration from Newton-Cotes quadratures and other well-known formulae from numerical analysis. In contrast to previous approaches that exploit the generalization of the Choquet integral, our approach requires the utilization of two or three adjacent values associated with the membership of a specific element in different classes. This enables the use of more efficient enhancements in terms of accuracy measurement. Specifically, the t-norm following the integral symbol can be effectively replaced by mathematical expressions used in executing numerical integration formulae. This leads to more precise results and aligns with the concept of numerical integration. Furthermore, in a series of experiments, we thoroughly assess the performance of the proposed approach in terms of classification accuracy. We analyze the strengths and weaknesses of the new approach and establish the experimental settings that can be applied to similar tasks. In the series of experiments, we have demonstrated that the proposed Quadrature-Inspired Generalized Choquet Integral (QIGCI) can either outperform previous enha... |