Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
200
Lista 2024
Status:
Autorzy: Rachwał Albert, Karczmarek Paweł, Rachwał Alicja
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 718
Numer artykułu: 122390
Strony: 1 - 16
Impact Factor: 6,8
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The research was financed from the internal Fund of the Scientific Discipline (Grants no. FD-20/IT-3/004 and FD-20/IT-3/055).
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
This paper presents an innovative approach to anomaly detection, combining the Isolation Forest method with Zdzisław Pawlak's rough set theory. The core methodology involves modifying the structure of binary trees used in Isolation Forests, allowing nodes to have more than the usual two children. Based on rough set theory, two approaches are developed: one where each node has three children, and another with five children per node. According to Pawlak's theory, lower and upper approximations are sought using the mean and standard deviation to define rough sets. This methodology is further enhanced by introducing a boundary region in the partitioned dataset, creating two variants: one with boundaries spanning from 1.5 to 3 standard deviations and another from 3 to 6 standard deviations. Each attribute is divided into a rough set comprising five subsets, with observations assigned to specific areas based on the defined limits, receiving corresponding weights. The proposed models are evaluated against the base Isolation Forest and K-Means-Based Isolation Forest, demonstrating notable improvements in performance.