Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza wykazu
Status:
Autorzy: Kłosowski Grzegorz, Kulisz Monika, Rymarczyk Tomasz, Niderla Konrad
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 217 - 231
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: Intelligent Systems in Production Engineering and Maintenance IV
Skrócona nazwa konferencji: ISPEM 2025
URL serii konferencji: LINK
Termin konferencji: 24 czerwca 2025 do 27 czerwca 2025
Miasto konferencji: Wrocław
Państwo konferencji: POLSKA
Publikacja OA: NIE
Abstrakty: angielski
The primary objective of this paper was to present an original neural network architecture specifically tailored for transforming electrical measurement data into images in industrial tomography applications. To achieve this goal, a multi-branch differential neural network was developed, featuring specialized “negation” layers capable of explicitly computing differences between parallel branches. These layers enable the network to emphasize subtle variations within input data by effectively subtracting one set of learned features from another. The proposed differential neural architecture was comprehensively evaluated and benchmarked against four established methodologies, encompassing both deterministic approaches (Tikhonov regularization and Total Variation method) and machine learning-based solutions (Elastic Net regression and standard Long Short-Term Memory networks). Results clearly demonstrated the superiority of the proposed differential model in terms of accuracy, robustness to noise, and overall image re-construction quality. The differential approach not only exhibited improved performance metrics but also provided significant advantages in handling common-mode artifacts prevalent in industrial tomography measurements. Consequently, this study confirms the potential of differential neural networks with integrated negation operations as powerful tools in industrial tomography, offering enhanced capabilities for anomaly detection, artifact suppression, and precise image reconstruction.