Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
7
Lista B
Status:
Autorzy: Rymarczyk Tomasz, Kłosowski Grzegorz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2017
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 4
Wolumen/Tom: 7
Strony: 205 - 23
Bazy: BazTech
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 21 grudnia 2017
Abstrakty: polski | angielski
W artykule zaprezentowano przykład zastosowania hybrydowego systemu wspomagania decyzji w kontekście zarządzania ryzykiem w łańcuchu dostaw. Główny moduł sterownika bazuje na koncepcji symulacji Monte Carlo. Wektor danych wejściowych zawiera istotne informacje, których wyrażenie w postaci zmiennych ilościowych stanowi wyzwanie, w związku z czym zaproponowano użycie sztucznej inteligencji. W zależności od dostępności do danych historycznych, sterownik decyzyjny zastosuje sieci neuronowe lub logikę rozmytą. Zaprezentowane rozwiązanie może stanowić wsparcie dla menedżerów podczas podejmowania decyzji będących odpowiedzią na różnorodne ryzyka w obszarze zarządzania łańcuchem dostaw.
In this paper, the conceptual model of risk-based cost estimation for completing tasks within supply chain is presented. This model is a hybrid. Its main unit is based on Monte Carlo Simulation (MCS). Due to the fact that the important and difficult to evaluate input information is vector of risk-occur probabilities the use of artificial intelligence method was proposed. The model assumes the use of fuzzy logic or artificial neural networks – depending on the availability of historical data. The presented model could provide support to managers in making valuation decisions regarding various tasks in supply chain management.