Fragmenty książek z 2024 (3)
1. Improving Image Reconstruction Quality in Ultrasonic Tomography Using Deep Neural Networks / Monika Kulisz, Grzegorz Kłosowski, Tomasz Rymarczyk, Konrad Niderla, Piotr Bednarczuk. [W]: SenSys '23: Proceedings of the 21st ACM Conference on Embedded Networked Sensor Systems.- 2024, s. 520-521 [MNiSW: 200]
2. The Concept of an Ultrasensitive Industrial Ultrasound Scanner Using Hilbert and Wavelet Transforms in a Machine Learning Model / Grzegorz Kłosowski, Tomasz Rymarczyk, Manuchehr Soleimani, Konrad Niderla. [W]: SenSys '24: Proceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems.- 2024, s. 873-874 [MNiSW: 200]
Fragmenty książek z 2023 (2)
Fragmenty książek z 2022 (3)
1. Comparison of Multilayer Perceptron and Convolutional Neural Networks in 3D Process Electrical Tomography / Tomasz Rymarczyk, Grzegorz Kłosowski, Konrad Niderla. [W]: 8th Symposium on Applied Electromagnetics SAEM’2022 : book of digests.- 2022, s. 17-22
2. Use of the Two-Stage Neural System in Electrical Impedance Tomography for Imaging Moisture inside Walls / Grzegorz Kłosowski, Tomasz Rymarczyk, Konrad Niderla. [W]: SenSys '22 : Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems.- 2022, s. 861-862 [MNiSW: 200]
3. Use of the Two-stage Neural System in Industrial Electrical Tomography - Hybrid Approach / Grzegorz Kłosowski, Tomasz Rymarczyk, Konrad Niderla. [W]: UbiComp/ISWC '22 Adjunct : Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2022 ACM International Symposium on Wearable Computers.- 2022, s. 55-56 [MNiSW: 200]
Fragmenty książek z 2019 (2)
Fragmenty książek z 2018 (1)
1. Application of a distributed industrial tomography system for the analysis of technological processes / Tomasz Rymarczyk, Konrad Niderla, Edward Kozłowski, Grzegorz Kłosowski, Paweł Tchórzewski. [W]: Applications of Electromagnetics in Modern Techniques and Medicine (PTZE) 2018.- 2018, s. 244-247 [MNiSW: 15]
Jeżeli ta strona zawiera nieaktualne, błędne lub niekompletne dane prosimy o kontakt pod adresem oab@pollub.pl